Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
China Journal of Chinese Materia Medica ; (24): 2165-2169, 2022.
Article in Chinese | WPRIM | ID: wpr-928156

ABSTRACT

Two new polyketides, lasobutone A(1) and lasobutone B(2), along with three known compounds, guignardianone C(3), guignardic acid(4), and 4-hydroxy-17R-methylincisterol(5), were isolated from the endophytic fungi Xylaria sp. by silica gel, MCI, and preparative HPLC, which was separated from the Chinese medicinal material Coptis chinensis and cultivated through solid fermentation with rice. Their structures were elucidated on the basis of spectroscopic methods, such as MS, NMR, IR, UV, and ECD. Compounds 2 and 4 showed inhibitory activities against the nitric oxide(NO) production in the LPS-induced macrophage RAW264.7 with IC_(50) values of 58.7 and 42.5 μmol·L~(-1) respectively, while compound 5 exhibited cytotoxic activities against HT-29 with IC_(50) value of 14.3 μmol·L~(-1).


Subject(s)
Antineoplastic Agents , Coptis chinensis , Endophytes/chemistry , Fungi , Polyketides/chemistry
2.
China Journal of Chinese Materia Medica ; (24): 980-987, 2022.
Article in Chinese | WPRIM | ID: wpr-928017

ABSTRACT

The ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS~E) technology was employed to compare the chemical components between the aerial and underground parts of Coptis chinensis samples from different batches. According to the retention time, molecular ion peak, and LC-MS~E fragment information of the reference substances and available literature, we identified a total of 40 components. Thirty-three and 31 compounds were respectively identified in the underground part(taproots) and the aerial part(stems and leaves) of C. chinensis. Among them, 24 compounds, including alkaloids(e.g., berberine and jatrorrhizine) and phenolic acids(e.g., chlorogenic acid, quinic acid, and tanshinol), were common in the two parts. In addition, differential components were also identified, such as magnoline glucoside in the underground part and(±) lariciresionol-4-β-D-glucopyranoside in the aerial part. The analysis of fragmentation pathways based on spectra of reference substances indicated the differences among samples of different batches. Furthermore, we performed the principal component analysis(PCA) for the peak areas of C. chinensis in different batches. The results showed that the underground part and the aerial part were clearly clustered into two groups, indicating that the chemical components contained in the two parts were different. Furthermore, the results of partial least squares discriminant analysis(PLS-DA) identified 31 differential compounds(VIP value>1) between the underground part and the aerial part, mainly including alkaloids, phenolic acids, lignans, and flavonoids. This study proves that C. chinensis possesses great development potential with multiple available compounds in stems and leaves. Moreover, it sheds light on for the development and utilization of non-medicinal organs of C. chinensis and other Chinese medicinal herbs.


Subject(s)
Chromatography, High Pressure Liquid/methods , Coptis chinensis , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Technology
3.
China Journal of Chinese Materia Medica ; (24): 967-971, 2022.
Article in Chinese | WPRIM | ID: wpr-928015

ABSTRACT

A new polyketide, coptaspin A(1), along with two known compounds 4-acetyl-3,4-dihydro-6,8-dihydroxy-3-methoxy-5-methylisocoumarin(2), and cytochalasin Z_(12)(3), was isolated from the endophytic fungi Aspergillus sp. ZJ-58, which was isolated from the genuine medicinal plant Coptis chinensis in Chongqing after solid-state fermentation on rice and silica gel, MCI, and HPLC-based separation. Their structures were elucidated by MS, NMR, IR, UV, and ECD. The newly isolated compound 1 showed moderate inhibitory activities against LPS-induced NO production in RAW264.7 macrophages with the IC_(50) value of 58.7 μmol·L~(-1), suggesting its potential anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aspergillus/chemistry , Coptis chinensis , Plants, Medicinal , Polyketides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL